Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2022

Simultaneous Detection of Signatures of Conjugate Photoelectrons in the Ionosphere and Thermosphere

We investigate the impact of conjugate photoelectrons (CPEs) on the topside (∼600 km altitude) ionosphere at low and midlatitudes using measurements of the ion temperature, density, and composition from the first Republic of China satellite during a period of the high to moderate solar activity (March 1999 to June 2004). Elevated ion temperatures and densities are observed in the dark Northern American-Atlantic sector during the December solstice and in the Australian sector during the June solstice. The oxygen ion fraction and density are also elevated at these locations. These observations indicate that photoelectrons from the conjugate hemisphere heat the local ionospheric plasma. The morphology of the ion temperature in the winter hemisphere is well represented by the solar zenith angle in the sunlit conjugate hemisphere. The CPE hypothesis for the observed ionospheric heating is confirmed by coincident nighttime enhancements of the far ultraviolet airglow measured by the Global Ultraviolet Imager onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite.

Kil, Hyosub; Paxton, Larry; Schaefer, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA030121

airglow; conjugate photoelectron; ion density; ion temperature

2021

Climatological study of the ion temperature in the ionosphere as recorded by Millstone Hill incoherent scatter radar and comparison with the IRI model

Ion temperature data recorded by Millstone Hill incoherent scatter radar (42.61° N, 288.51° E) over four full solar cycles (from 1970 to 2018) are analyzed to depict its climatological behavior in the range of altitudes between 100 and 550 km. The ion temperature dependencies on altitude, local time, month of the year, and solar activity level are studied through a climatological analysis based on binning and boxplot representation of statistical values. Binned observations of ion temperature are compared with International Reference Ionosphere (IRI) modeled values (IRI-2016 version). This comparison reveals several shortcomings in the IRI modeling of the ion temperature at ionosphere altitudes, in particular for the altitudinal, diurnal, seasonal, and solar activity description. The main finding of this study is that the overall IRI overestimation of the ion temperature can be probably ascribed to the long-term ionosphere cooling. Moreover, the study suggests that the IRI ion temperature model needs to implement the seasonal and solar activity dependence, and introduce a more refined diurnal description to allow multiple diurnal maxima seen in observations. The IRI ion temperature anchor point at 430 km is investigated in more detail to show how also a better description of the altitude dependence is desirable for modeling purposes. Some hints and clues are finally given to improve the IRI ion temperature model.

Pignalberi, Alessio; Aksonova, Kateryna; Zhang, Shun-Rong; Truhlik, Vladimir; Gurram, Padma; Pavlou, Charalambos;

Published by: Advances in Space Research      Published on: sep

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.025

Climatological analysis; International Reference Ionosphere model; ion temperature; Millstone Hill incoherent scatter radar

2014

Investigation of sudden electron density depletions observed in the dusk sector by the Poker Flat, Alaska incoherent scatter radar in summer

This paper investigates unusually deep and sudden electron density depletions (troughs) observed in the Poker Flat (Alaska) Incoherent Scatter Radar data in middle summer of 2007 and 2008. The troughs were observed in the premidnight sector during periods of weak magnetic and solar activity. The density recovered to normal levels around midnight. At the time when the electron density was undergoing its steep decrease, there was usually a surge of the order of 100 to 400 K in the ion temperature that lasted less than 1 h. The Ti surges were usually related to similar surges in the AE index, indicating that the high-latitude convection pattern was expanding and intensifying at the time of the steep electron density drop. The convection patterns from the Super Dual Auroral Radar Network also indicate that the density troughs were associated with the expansion of the convection pattern to Poker Flat. The sudden decreases in the electron density are difficult to explain in summer because the high-latitude region remains sunlit for most of the day. This paper suggests that the summer density troughs result from lower latitude plasma that had initially been corotating in darkness for several hours post sunset and brought back toward the sunlit side as the convection pattern expanded. The magnetic declination of ~22\textdegree east at 300 km at Poker Flat greatly facilitates the contrast between the plasma convecting from lower latitudes and the plasma that follows the high-latitude convection pattern.

Richards, P.; Nicolls, M.; St.-Maurice, J.-P.; Goodwin, L.; Ruohoniemi, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.1210.1002/2014JA020541

ion temperature; plasma convection; plasma troughs



  1